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Oscillations of a cavity shear layer, involving a downstream-travelling wave and 
associated vortex formation, its impingement upon the cavity corner, and upstream 
influence of this vortex-corner interaction are the subject of this experimental 
investigation. 

Spectral analysis of the downstream-travelling wave reveals low-frequency com- 
ponents having substantial amplitudes relative to that of the fundamental (instability) 
frequency component; using bicoherence analysis i t  is shown that the lowest-frequency 
component can interact with the fundamental either to reinforce itself or to  produce 
an additional (weaker) low-frequency component. I n  both cases, all frequency com- 
ponents exhibit an overall phase difference of almost 2kn (k = 1,2, ...) between 
separation and impingement. Furthermore, the low-frequency and fundamental 
components have approximately the same amplitude growth rates and phase speeds; 
this suggests that the instability wave is amplitude-modulated at the low frequency, 
as confirmed by the form of instantaneous velocity traces. 

At the downstream corner of the cavity, successive vortices, arising from the ampli- 
fied instability wave, undergo organized variations in (transverse) impingement 
location, producing a low-frequency component(s) of corner pressure. The spectral 
content and instantaneous trace of this impingement pressure are consistent with 
those of velocity fluctuations near the (upstream) shear-layer separation edge, giving 
evidence of the strong upstream influence of the corner region. 

1. Introduction 
In recent years, self-sustained oscillations of impinging shear layers such as the 

jet-edge, mixing-layer-edge, and cavity-shear-layer-corner configurations have been 
extensively investigated with the objectives of attenuating noise generation and flow- 
induced vibrations of structural components. The review of Rockwell & Naudascher 
(1979), for example, summarizes characteristics of these oscillations. The general 
features of such oscillations are illustrated in figure 1 for the case of a cavity flow. 
Studies of this class of flows have focused on the primary (or predominant) frequency 
of oscillation arising from hydrodynamic instability of the separated shear layer, its 
variation with flow velocity and impingement length, occurrence of jumps in 
frequency, and possible hysteresis effects. Relatively little attention has been given 

t Present address: Stromungslabor 1504, Gebriider Sulzer A.G., CH-8401 Winterthur, 
Switzerland. 
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FIGURE 1. Schematics of physical mechanisms associated with oscillations of an impinging flow; 
and frequency variation with (a) varying free-stream velocity U ,  fixed impingement length L, 
and ( b )  fixed free-stream velocity, varying impingement length. 

to oscillation components having frequencies lower than the fundamental. Yet the 
time-averaged spectra of velocity fluctuations in mixing-layer-edge (Hussain & 
Zaman 1978), cavity (Rockwell & Knisely 1979a, 1980b) and jet-edge (Stegen & 
Karamcheti 1970) configurations exhibit well-defined low-frequency components, 
thereby strongly suggesting that there is a well-defined mechanism for generating 
these components, common to  a number of flow-structure geometries. 

A thorough definition of the physical mechanism(s) generating and sustaining the 
low-frequency components rests upon an understanding of the cycle of events giving 
rise to self-sustained oscillations a t  the fundamental frequency of shear-layer in- 
stability; consequently, this aspect is briefly discussed here. I n  their review of self- 
sustained oscillations of impinging shear layers, Rockwell & Naudascher (1979) 
emphasize the following features common to a diverse group of flow configurations. 

(a )  Feedback, or upstream injluence, due to disturbances arising f r o m  unsteady %out- 
corner or wedge interaction at impingement (see figure 1 ) .  For the conditions examined 
herein (low-speed water flow), the acoustic wavelength is much longer than the 
impingement length; therefore, this upstream influence is essentially instantaneous 
and can be described as ‘pseudo-sound’ (Ffowcs Williams 1969). That is, changes in 
concentration of vorticity (e.g. severe distension), associated with sudden changes in 
velocity and pressure a t  the impingement corner or edge, result in corresponding 
velocity and pressure perturbations in upstream regions of the flow, having t8he greatest 
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consequence in the highly sensitive region near shear-layer separation. Of course, 
even non-impinging concentrations of vorticity have an upstream influence in accord- 
ance with the Biot-Savart law. But the drastic change in flow-boundary conditions 
a t  the impingement edge is the source of dominant upstream influence; in fact, Powell 
(1961) has shown that unsteady-flow-edge interaction gives rise to a strong dipole 
source a t  the edge, whose dominant effect is imprinted upon the receptive region of 
the upstream flow near separation. Moreover, Ziada & Rockwell (1982) and Rockwell 
& Knisely (1979a, b)  have shown that the presence of an impingement edge or corner 
gives strongly organized fluctuations a t  the upstream separation edge; without the 
downstream edge or corner, they are undetectable. 

I n  the present study, this upstream influence is amplitude-modulated; it arises 
from ordered variations in the impingement location of vortices upon a corner, pro- 
ducing amplitude modulations of the pressure and velocity fluctuations in the im- 
pingement region. The upstream consequence is induction of corresponding, amplitude- 
modulated fluctuations in the sensitive region near separation ; indeed, velocity 
fluctuations a t  separation are relatively strong, displaying time-averaged spectra and 
instantaneous traces that are qualitatively similar to those a t  impingement. These 
fluctuations induced a t  separation are, in turn, amplifiedin the downstream shear layer. 

( b )  Amplijcation of induced disturbances in the shear layer from separation to impinge- 
ment (see figure I) .  I n  accordance with linear (spatial) stability theory (Michalke 
1965), disturbances are amplified exponentially with streamwise distance provided 
their amplitude remains sufficiently small; such is the case in the region immediately 
downstream of the separation edge. The aforementioned upstream influence arising 
from vortex-corner interaction provides the organized perturbations a t  separation 
that are subsequently amplified, first exponentially, then departing from this expo- 
nential (often called ' linear ') growth because of finite-amplitude effects a t  locations 
farther downstream. These amplified disturbances (usually vortices) impinge upon 
the downstream corner, in turn producing an upstream influence, thereby closing the 
loop for sustaining the oscillations. The downstream-travelling wave associated with 
the amplifying disturbance is typically represented by an amplification factor ( - ai) 
and a single wavenumber (a,) (Michalke 1965), simplifying its analytical and experi- 
mental characterization. 

I n  this investigation, the disturbance arriving at  the upstream separation edge 
from the downstream corner region is amplitude-modulated; moreover, the disturbance 
amplified between separation and impingement maintains its amplitude-modulated 
character, as evidenced by instantaneous velocity traces, as well as by the growth 
rates - ai and phase speeds c of all frequency components associated with the ampli- 
tude-modulated wave. The extent to which this growth of the modulated disturbance 
involves nonlinear interactions will be addressed. 

The objectives of this study are to characterize the above aspects of self-sustained, 
amplitude modulation of impinging shear layers. Following a description of the experi- 
mental system, these points will be addressed: the overall variations of the fundamental 
and low-frequency components associated with amplitude modulation as a function 
of impingement length L and free-stream velocity U ;  the examination of nonlinear 
interaction between frequency components; the source of dominant upstream influence, 
i.e. vortex-corner interaction mechanisms; the nature of growth of the amplitude- 
modulated instability wave travelling downstream through the shear layer along the 
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FIGURE 2. Two acceleration-ramp geometries and nomenclature. 

mouth of the cavity; and, finally, overall phase conditions between separation and 
impingement for the fundamental and low-frequency components of the amplitude- 
modulated wave. 

2. Experimental system and instrumentation 
Experiments were carried out in a recirculating water channel having a test section 

30.4 cm wide and 45.7 cm high. As described in previous studies (Rockwell & Knisely 
1979a, b,  1980a), in order to provide a well-defined boundary layer a t  separation, the 
flow was divided into two parts, one passing beneath the rig, the other passing over the 
cavity. The flow passing over the cavity arrangement was accelerated before separa- 
tion. Several acceleration ramp geometries were employed for initial diagnostics. To 
maximize the spanwise coherence of the shear layer along the mouth of the cavity, 
and minimize contamination by the large-scale recirculation vortex, which may, in 
the case of the classical rectangular cavity (Maul1 & East 1963; Rockwell & Knisely 
1980 a), exert three-dimensional influences, the geometries of figure 2 were employed. 
Extensive flow visualization of the spanwise character of the free shear layer showed 
a strong coherence for the range of impingement lengths and velocities examined 
herein. At lengths longer than those reported in this investigation, the sinuous 
warping of the transverse vortex core reported earlier (Konrad 1976; Breidenthal 
1979; Rockwell & Knisely 1 9 8 0 ~ )  was observed. Design of the separation edge was 
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stimulated by the suggestion of Morkovin & Paranjape (1971) that  a sharp edge 
optimizes receptivity to  incident disturbances. While both ramps produced well- 
defined oscillations having a very similar character, the oscillations associated with 
the ramp (a )  were slightly stronger, and i t  was used in the majority of experiments. 
At a Reynplds number (based on 0,) momentum thickness a t  separation) of 190, the 
two ramps produced flows with approximately equal momentum thicknesses 

(0, = 0-075 & 0.005 cm) 

but slightly different shape factors (Ha = 1.90, Hb = 2.20). The two ramps resulted 
in unsteady fields with velocity and pressure spectra of essentially identical character 
a t  Re, = 190 over the range of lengths of interest. Unless otherwise stated, the data 
presented were obtained using the ramp in figure 2 (a) .  

Velocity measurements were made with DISA hot-film probes using a DISA 55D01 
anemometer in conjunction with a DISA 55M25 linearizer. The impingement edge of 
the cavity was fitted with a pressure tap 0.24 cm below the impingement corner. A 
Kulite XCS-093-2D bonded strain gauge transducer was used to measure the fluctuat- 
ing pressure. Both the velocity signal and the pressure signal were passed through 
identical Krohn-Hite Model 3700 band-pass filters and class A variable-gain (from 1 
to  1000) amplifiers. The nominal filtering frequencies were two octaves above and 
below any frequencies of interest. 

The injection of dye into the boundary layer prior to separation and into the re- 
circulating cavity volume permitted visualization of the discrete vortical structures. 
The simultaneous recording of dye visualization and fluctuations in velocity and 
pressure was accomplished with a dual-camera, split-screen, high-speed Instar video 
recording system. One camera recorded the visualization while the other was focused 
on the screen of a dual-trace storage oscilloscope displaying the fluctuating pressure 
and velocity signals. The video tape was played back in slow motion/stop action and 
photographs were made of the screen for inclusion in this paper. 

The fluctuating pressure and velocity signals were processed using a PDP-8 mini- 
computer to  sample, digitize, and perform spectral analysis of the fluctuating signals. 
An alternative process, involving digital recording of the fluctuating signals on cas- 
settes, using a Nicolet 1090A digital oscilloscope with appropriate interfaces, and then 
processing on a CDC 6400 computer, was employed for the estimation of cross spectra 
of fluctuating velocity and pressure, bispectra, and bicoherence spectra. Unless 
otherwise noted, power spectra presented are from the PDP-8 minicomputer. 

I n  order to characterize fundamental and low-frequency components of the oscilla- 
tion, a range of conditions, involving twofold variations in velocity and impingement 
length, were examined. A large number of amplitude spectra taken over these ranges 
provided a composite overview of the frequencies and amplitudes of the discrete 
oscillation components. 

3. Variation of fundamental and low-frequency components with 
impingement length and free-stream velocity 

From previous investigations (e.g. Sarohia 1975), and as shown schematically in 
figure 1, the fundamental frequency of shear-layer oscillation is expected to  vary with 
both impingement length L and free-stream velocity U .  In t?his investigation, spect,ra 
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of pressure fluctuations measured a t  impingement indicate the existence of well- 
defined subharmonics in the cavity shear layer both before and after the frequency 
jump (the discontinuity in the f us. L and f us. U plots). To determine the behaviour 
of possible low-frequency components, as well as to  confirm that of the fundamental, 
two sets of pressure fluctuation spectra were recorded. In  the first series of measure- 
ments, the free-stream velocity was held constant while the impingement length was 
varied. In  the second series, the impingement length was fixed and the free-stream 
velocity varied. I n  discussing both sets of data and throughout this paper, the sub- 
script I will be used to denote parameters in stage I prior to  the frequency jump where 
a single subharmonic is present. The subscript I1 will be used to  distinguish parameters 
associated with oscillations occurring in stage II (after the frequency jump) where 
dual subharmonics are present. 

Constant U ,  varying L 
Pressure spectra for selected non-dimensional impingement lengths LIB, (where 8, is 
the momentum thickness a t  separation) and constant free-stream velocity U are 
shown in figure 3. (These spectra are representative of a much larger family of spectra 
taken a t  finer increments of 46,.) The plot of dimensionless frequencies of peaks in 
these spectra, as a function of length, is given in figure 4. I n  examining figures 3 and 4, 
it is seen that, at shorter lengths, the energy is concentrated a t  the fundamental fre- 
quency PI. As the length is increased, the frequency of the fundamental decreases. 
With a further increase in length, a component appears at 0-5p,. The frequency of the 
0.5p1 component decreases proportionally with that of the PI component as length is 
increased, until the critical length, at which the frequency jump occurs. At LIB, = 98 
in figures 3 and 4, the fundamental has jumped to pII, producing two well-defined 
frequency components a t  about O.4pI1 and about O.6p11, as well as two components 
a t  about 0.2& and about 0.8p1,, which become very weak and disappear a t  short 
distances from the jump. These components (0.2/3, 0-8p) cannot be considered signifi- 
cant; consistent phase measurements were not possible a t  these frequencies. 

At the jump, the extension of the 0.5p, component into stage I1 appears as the 
component at about 0.4/3,,, suggesting that the same mechanism may be responsible 
for the production of both components. Discussion of the O.6pII component will be 
delayed until after the results of the fixed impingement length with varying free- 
stream velocity are presented. 

Figure 5 shows amplitude data corresponding to the frequency data of figure 4. 
I n  stage I, the onset of cavity oscillations is quite distinct. As the impingement 
length is increased, the amplitude of the PI component grows quickly, saturates, and 
decays as the 0.5/3, component appears and extracts energy from the PI component. 
At L/6,2: 97 the frequency of the fundamental component jumps to  a higher value. 
There is little change in amplitude of the component a t  the fundamental frequency; 
that is Apl z ApII a t  the jump. The 0.5,8, component reaches its maximum amplitude 
just prior to the jump. I n  stage I1 there is considerable scatter in the data, most likely 
resulting from a degree of iiitermittency of the subharmonics. I n  general, it is seen 
that the strength of the pII component slowly decays and the subharmonics slowly 
gain strength, until L/6, 2: 145. The low-frequency components a t  0.5/3, and a t  about 
0'4& and O.6PII are always of the same order of magnitude; typically they are a 
substantial fraction of the corresponding fundamental component,. This observation 
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FIGURE 3. Fluctuating-pressure spectra for increasing impingement length 
showing jump from stage I to stage 11; R6* = 190. 

underscores the necessity of considering the dynamics of the subharmonic com- 
ponent(s) in characterizing the unsteady flow field. 

Varying U ,  fixed L 

Further insight into the oscillation process, and corroboration of the data obtained 
for variation of impingement length, was attained by varying the free-stream velocity 
U a t  a constant value of length L. Figure 6 shows selected spectra and figure 7 portrays 
behaviour of the peak frequencies as a function of velocity for the larger family of 
spectra from which those of figure 6 were extracted. These spectra were obtained 
using the ramp in figure 2 ( b ) .  I n  figure 6, the 0.5p1 component does not appear a t  the 
lowest velocity, but, as U is increased, the 0.5j3, component appears as a significant 
spectral component. As indicated in figure 7 ,  a t  sufficiently high flow speed, the 
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frequency jump occurs and characteristic stage I1 oscillations are present (not shown 
in figure 6). However, decreasing the velocity to the point a t  which the jump had 
occurred with increasing velocity does not produce a jump back to stage I. Instead, 
the stage I1 oscillations, nominally O.4PI1, 0.6P1, and Prr, persist throughout the 
region that had been characterized by severe 0.5p, modulation with increasing velocity. 
At a much lower speed the flow reverts to stage I behaviour. This marked difference 
between data acquired with increasing and decreasing velocity indicates the occurrence 
of strong hysteresis, for not only the fundamental (p )  but also its subharmonics 
(0.4/3, 0.6P). The hysteresis region is outlined in figure 7, with arrows indicating the 
sequence in which the data were obtained. The occurrence of hysteresis for this case 
of fixed L and changing U indicates the presence of two bistable modes in the region 
of the frequency jump and underscores the importance of considering the history of 
the flow system in characterizing its dynamic behaviour. 

In  figure 7, as in figure 4, the 0.4p,, component appears as an extension of the 0.5P, 
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component into stage 11. The component a t  about O.6P11, occurring in stage I1 in 
figures 4 and 7, is felt to be associated with nonlinear wave interaction. I n  essence, i t  
is well known, from dual-frequency ( f a  and f b )  external excitation of free shear layers, 
that  the nonlinear interaction of two discrete frequencies ( f a ,  f,) can produce various 
combination modes corresponding to f a - f b  etc. (see, for example, Sato 1971; Miksad 
1973; Ronneberger & Ackermann 1979). In  a given experiment, it will be the survivors 
of the nonlinear mode competition that are detectable in a given series of measure- 
ments. Employing this concept, the generation of the O.6pII component observed 
herein may be attributed to the interaction of the component a t  about 0.4p1, with 
PII; that is, the component st about O*GpII corresponds to the difference frequency. 
Also significant is the fact that  the 0*4p,, component is always stronger than the 
O*6pII component (see figure 5 ) ,  supporting the concept of generation of the 0-6/3,, 
component through nonlinear interaction of the two stronger components a t  about 
0.4p1, and a t  PIr. Section 4 examines nonlinear interaction in detail. 

4. Nonlinear interaction : bispectral analysis 
The term 'nonlinear interaction' has been applied to phenomena that involve 

coupling between two frequencies to produce a third. Necessary conditions for this 
' three-wave coupling ' between waves of frequencies ( f,, f , ,  f,) and wavenumbers 
(kl, k,, k3) are the frequency (i.e. f, + f, = f , )  and the wavenumber (i.e. k, + k, = k,) 
selection rules (Kim & Powers 1979). However, these selection rules for f and k may 
also be satisfied by self-excited independent-wave phenomena. If f3 is a normal mode, 
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FIGURE 6. Fluctuating-pressure spectra for increasing velocity 
(with 1, = 6 cm, fixed) showing stage I oscillations. 

and not a product of nonlinear interaction, it is not expected to  have any phase 
coherence with the fluctuations a t  frequencies fi and fi. 

To a first approximation, any signal which fluctuates in time (hereafter referred to  
as a time series) and is assumed to be a linear superposition of statistically independent 
frequency components, may be described by its power (or amplitude) spectrum, 
which indicates the frequency’f distribution of power (or amplitude) of the fluctuations. 
If the assumption that the process is a linear superposition of statistically independent 
frequency components is valid, the power spectrum then describes the process com- 
pletely (Blackman & Tukey 1958). For nonlinear phenomena, second-order (power) 
spectra do not provide sufficient information for a thorough examination of the non- 
linear aspects (Rosenblatt st Van Ness 1965). Investigation of these processes requires 
third- and higher-order moment functions and their transforms. The third-order 

t The term ‘frequency’ is used t2-1roughout this discussion in the misc of the number of cycles 
per second of R siiiiisoid (Hz) nntl not in the statistical scliise. 
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spectrum, known as the bispectrum, has been used as a tool in studies of nonlinear 
interactions in oceanographic (Hasselmann, Munk & MacDonald 1963) and plasma 
physics (Kim & Powers 1978, 1979; Kim et al. 1980) applications, as well as in studies 
of sunspot activity (Brillinger & Rosenblatt 1967), and in determining the non- 
locality of the turbulent energy cascade (Lii, Rosenblatt & Van Atta 1976). The bi- 
spectrum and its normalized counterpart, the bicoherence spectrum, provide a means 
through which (quadratic) nonlifiear interactions may be examined and quantified. 
To define the bicoherence spectrum, it is first necessary to recall the definition of power 
spectrum and then define the bispectrum, since both of these quantities are used in the 
definition of bicoherence spectrum. To do this, define a real and stationary signal x( t )  
with a zero mean value and a Fourier representation 

m 

k= -m 
x( t )  = X,e--icfJn.t, 

where X-, = X,* (* indicates complex conjugate), wk = 2rrk/T, and T is the record 
length of x ( t ) .  

The power spectrum of the time series may be written (to within a constant) as 

P(k)  = lim E[X,X:] 
'+rn 

where E [  ] denotes a mean (or expected) value. The power spectrum indicates the 
contribution to the mean square E [ ~ 2 ( t ) ]  from those spectral components a t  fk of 
width Af, where Af = 1/T, and fk = w,J27r = k / T .  
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Similarly, the bispectrum may be defined as 

B(k, I )  = lim E [ X k & X ~ + , ] ,  

and represents the contribution to the mean cube value of those spectral components 
a t  f k  and fi of area (Af)z. As stated by Kim & Powers (1978), the bispectrum could 
alternatively be defined as the two-dimensional Fourier transform of a second-order 
correlation function C ( T ~ ,  T ~ )  = E[x(t) x(t + T ~ )  x(t +T~)]. 

The bicoherence spectrum is a normalized version of the bispectrum, and is defined 
in a manner analogous to the linear coherence spectrum, which measures, on a spectral 
basis, the degree of linear correlation between two signals (Kim & Powers 1979). The 
definition of the bicoherence spectrum to be used in this study is 

T-tm 

IB(k 1)  l 2  
P(k)  P(1) P(k f 1) ' 

b2(k, 1) = 

in which B and P represent the bispectrum and power spectrum defined earlier and 
k and 1 are integers representing the kth and lth discrete frequency components, i.e. 
fk = ( k -  1)Ajand f r  = ( I -  1)Af. 

The value of the bicoherence spect,rum is expected to  lie between zero and unity 
(Kim & Powers 1979). When nonlinear coupling and phase coherence are present, the 
bicoherence spectrum (hereinafter also referred to  simply as the bicoherence) will 
take on a value near unity. A value of the bicoherence near zero would indicate the 
three components fk, fi, f k + l  to  be independent, self-excited modes. Further, for 
intermediate values, Kim & Powers (1979) have shown that the value of the bico- 
herence may be interpreted as the fraction of power present a t  the interaction frequency 
that is due to quadratic coupling between the two component frequencies. 

The above definition of bicoherence appears in the literature (Kim & Powers 1978) 
and has been used in calculations of bicoherence estimates (Haubrich 1965); estimates 
obtained using this definition are not necessarily bounded by unity. If i t  is desired to  
ascertain that the maximum value of b2(k ,  I )  is unity, one should use the following 
definition of bicoherence : 

Implementation of this definition in a computer algorithm requires the storage of 
an additional complex array EIIXkXX, I Z ] ;  in the present study, it would have resulted 
in a reduction of the frequency resolution because of computer limitations. Since the 
accurate determination of frequency components, sometimes separated by only 
0.7 Hz (in stage II), was paramount, and since i t  is the relative degree of nonlinear 
coupling (i.e. relative magnitudes of bispectral peaks) that  is of interest here, the 
first definition of b2(k ,  1 )  was employed. The computer algorithm employing the first 
definition of b2(k, I) successfully determined the extent of nonlinear coupling in all 
of the test cases of Kim & Powers (1979). In  addition, in estimating the bicoherence 
of the experimental data, the maximum value of b2(k ,  I )  was never observed to exceed 
unity. 

It is noted that, because of the symmetry of the Fourier components (X-k  = X ; )  
and the limits of the Nyquist frequency because of digitization, it is only necessary to 
calculate t,he bicoherence in a triangular domain given by 0 Q 1 6 $AT, I 6 k < + N  - 1, 
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where N is the number of points in the time series. Further details of the calculation 
procedure may be found in Kim & Powers (1979) and Knisely (1980). 

The same symmetry relation for Fourier components results in the following 
symmetry relations for the bicoherence: 

b2(k, 1 )  = bZ(1, k) = b y  - k ,  - I ) ,  

b2(k,l) = bZ(-- l ,k+l)  = 6 2 ( - k , k + Z ) .  

b2(k,Z) = b2(-k-Z,Z) = b2(k,  -k-Z) ,  

I n  applying the bicoherence calculations to  the impinging cavity shear layer, two 
representative impingement lengths were chosen, corresponding to conditions before 
(single subharmonic) and after (dual subharmonic) the frequency jump. The criteria 
for choosing each of these lengths was existence of a well-defined 0.5p1 component for 
the shorter length (LIB,, = 80, stage I) and pronounced approx. O.4pI1 and approx. 
O*6p11 Components for the longer (LIB,, = 100, stage 11). These lengths are the same 
as those employed in subsequent flow visualization, measurement of growth rates, 
and streamwise phase variations. 

The aforementioned three-wave coupling criteria (f, = f, +ti, k, = k, + k,) is satisfied 
in stage I by the frequency components 0.5/3, and PI, which have approximately 
equivalent phase speeds (as shown in 3 7) ,  indicating that their one-dimensional wave- 
numbers satisfy the coupling criterion. I n  stage 11, the coupling criteria are satisfied 
by approx. O-4pI1, approx. 0.6/3,, and&, whose phase speeds are again approximately 
equivalent (see 3 7).  

To account for the observed intermittency of strong subharmonic components, a 
form of ‘ conditional sampling ’ is employed. It involves examination of the spectrum of 
each individual record to  find those records that have strong subharmonic modulation 
exceeding a defined threshold. Once these records are identified, their spectra and bi- 
coherence spectra are averaged together to give a ‘ conditionally averaged’ spectrum 
and bicoherence spectrum for each of the two representative lengths investigated here. 

The ‘sampling criterion ’ involved selection of records whose spectra showed low- 
frequency amplitude peaks a t  least 3 5 %  of the amplitude of the corresponding 
fundamental. This criterion was satisfied by four records (for each impingement length) 
of velocity fluctuations a t  the edge of the shear layer within the domain 10 < x/O, < 30, 
thereby providing a spatially averaged bicoherence. The same sampling criterion was 
used for both impingement lengths, and calculations were executed using the CDC 6400 
computer. 

I n  the following, the two representative cases are considered: first, the shorter 
impingement length, giving rise to a single subharmonic a t  0.5p,; then, the longer 
length, associated with the dual subharmonic at about 0.4p1, and about O.6pII. 

Single subharmonic 

First, the case of subharmonic modulation a t  a single frequency will be examined. 
Modulation a t  0.5p1 is exhibited in the signals shown in figure 8. These signals are 
taken from the records whose spectra were averaged together to produce the ‘ condi- 
tionally averaged’ spectrum shown in figure 9 (a). In  this spectrum, the half-harmonic 
(0.5/?,) component has a magnitude in excess of 40 yo of the amplitude of the funda- 
mental. Figures 9 (b ,  c )  present the ‘conditionally averaged ’ bicoherence spectrum, 
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FIGURE 8. Instantaneous traces from ‘conditionally sainpled ’ data, showing strong modulation 
at one-half the fundamental frequency (0 .5p) ;  LIB,, = 80; Roo = 190. 
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in the form of both perspective and contour plots. From the contour plot (figure Sc), 
it is easily seen that interaction peaks exist a t  (0.5,8,, 0.5p1), (PI, 0.5p,), (PI, PI), 
(1-5& 0.5/?,) and (2pI,pI). Owing to symmetry relations (Knisely 1980), there are two 
possible interpretations of the peak a t  (0*5p,, 0-5p1) : 

0.5p1 + 0.5p1 + l*OpI, l*0pI - O @ ,  + 0*5p,. 
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FIGURE 9. Time-averaged (a)  amplitude spectrum, ( b )  perspective view of bicoherence spectrum 
and (c) top (contour) view of bicoherence spectrum for ‘conditionally sampled ’ data, showing 
characteristic stage I oscillations with modulation a t  0.5/3. In  (c), initial contour value is 0.20, 
with an increment of 0.15 between contours; LIB, = 80, Roo = 190. 

I n  this notation, the symbol + represents the phrase ‘produces through nonlinear 
interaction ’. I n  the first interpretation, the half-harmonic couples with itself to 
produce the fundamental. Since the fundamental component is known to arise from 
inherent shear-layer instability, and, as was shown in figure 3, the fundamental can 
exist alone without subharmonics a t  shorter cavity lengths, this interpretation appears 
somewhat inconsistent. I n  the second interpretation, derived from the symmetry 
relation b2(k, I )  = b2( - Z, k +  I), the peak a t  (0.5p1, is due to the half-harmonic 
(0.5/3,) coupling nonlinearly with the fundamental (PI) to reinforce the half-harmonic 
oscillations. The coupling term would be of the form 

cos(2np,t+$pr) (30s (2n(0.5P,)t+$o5p*), 

which can be rewritten in the form of sum and difference frequencies p - 0.5p and 
PI+0.5Pr. The difference frequency then shows up in the bicoherence as the 
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(0.5p1, 0-5/?,) peak, because of the symmetry relation. It is important to note that 
the sum frequency (PI, 0-5p,) shows up as well in the bicoherence (although with 
reduced amplitude), lending support to this second interpretation. 

I n  figures 9 (b,  c) ,  the peak a t  (0.5/3,, 0-5p1) takes a value in excess of 0.85, indicating 
that a large portion of the energy a t  0.5/3, results from the difference interaction of the 
0*5p,  component with the PI component; i.e. the subharmonic modulation a t  0.5pI is 
‘self-excited’ in the sense that a small disturbance a t  0.5p1 can reinforce itself sub- 
stantially through its interaction with PI. Kelly (1967), in analysing interactions 
among frequency components in an inviscid shear layer with a hyperbolic tangent 
profile, has shown that a disturbance a t  one half the frequency (subharmonic) of a 
periodic base flow, can interact with the base flow to reinforce the disturbance at the 
half-harmonic. The results of the present conditionally sampled bicoherence analysis 
do indeed support the concept of subharmonic reinforcement due to interaction with 
its fundamental. Further support is obtained by recalling the amplitude data of 
figure 5 .  The amplitude of the fundamental was seen to decrease with the appear- 
ance of the subharmonic, indicating energy flow from the fundamental to  the sub- 
harmonic. 

The generation of higher harmonics in shear layers is documented in the work of 
Browand (1966) and Miksad (1972), among others. Furthermore, i t  can be shown 
(Knisely 1980) that the production of higher harmonics is well predicted by Stuart’s 
(1967) nonlinear inviscid solution. In  the present study the peaks a t  (p1,pI) and 
(Zp,, PI) in figures 9(b ,  c )  are interpreted as the interaction of the PI frequency 
component with itself to  produce the 2p1 frequency component, and the further 
interaction of the PI component with the 2p, component to produce a component 
a t  3p1. 

The major peaks in the conditionally averaged bicoherence spectrum (figures 9 b, c )  
have been accounted for. Peaks a t  (0.5p1, 0.5p1) and (PI, 0.5p1) have been shown to 
indicate generation of difference and sum frequencies, with the difference frequency 
being the low-frequency modulation component 0.5/3,. The peaks a t  (PI, PI) and 
( 2p,, PI) indicate generation of higher harmonic components. 

Dual subharmonic 

Similar conditional sampling and bicoherence analysis was carried out for the repre- 
sentative case involving two subharmonic components (L/O,, = 100). Figure 10 
presents sample segments from the velocity- fluctuation records, whose spectra were 
ensemble-averaged to produce the ‘conditionally sampled’ spectrum of figure 11 (a). 
Note that the approx. 0‘4/?1, and approx. O.6PII modulation in the signals produces a 
five-cycle repetitive pattern. The five-cycle repetition is denoted by the pattern ab 
or a‘b‘; the changing nature of the five-cycle pattern is an indication of the time- 
dependent nature of phasing between frequency components. The conditionally 
averaged spectrum displays a very strong O.4pI1 component, having an amplitude 
approx. 80 % of the fundamental. The amplitude of the O.GpI, component is about 
half that of the 0.4p1, component, or about 40 :h that  ofthe fundamental. The corres- 
ponding ‘ conditionally sampled ’ bicoherence spectrum (figures 11 b, c )  shows signifi- 
cant interaction, as was found for the shorter-impingement-length case. 

Following the previous line of reasoning for the single subharmonic modulation and 
using the same symmetry relation, b2(k,  I) = b2( - I ,  k+  I ) ,  the peaks a t  (approx. 
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FIGURE 10. Instantaneous traces from ‘conditionally sampled ’ data, showing 5-cycle-repetition 
characteristics of stage I1 oscillations designated by ab and a‘b’; LIB, = 100, Roo = 190. 

O.6P11, approx. 0.4P1,) and (PIr, approx. 0*4P,,), may be interpreted as representing 
an interaction of the form cos [3n(0’4&) t + $o.4811] cos [ZnPIIt + $8rr]. As in the single- 
subharmonic case, this interaction can be rewritten in terms of sum and difference 
frequencies PI, - O*~PII and PI, + 0’4/?11. The difference-frequency interaction gives 
the peak a t  (O.6P11, 0‘4P1,) and the sum interaction frequency is reflected in the peak 
a t  (PI,, 0.4P1,). As previously discussed, the moderately strong peak at (Plr, PII) 
indicates generation of the 2P,, harmonic. 

The remaining two peaks, a t  (approx. 1*4P,,, &) and (approx. 1-4,8,,, approx. 0.6,8,,) 
have several possible interpretations, none of which can be ruled out apriori;  possible 
interpretations are discussed by Knisely (1980). 

I n  summary, ‘conditionally sampled ’ bicoherence spectra indicate that stage I and 
I1 both involve the interaction of the fundamental frequency with a low frequency a t  
0.5P1 in stage I and a t  approx. 0.4/3,, in stage 11. For single subharmonic modulation 
(at LIB, = 80), the interaction serves to reinforce the subharmonic modulation, 
demonstrating the self-sustaining nature of the subharmonic modulation. For dual- 
subharmonic modulation (at L/8, = IOO) ,  the interaction of the 0.4P,, component 
with the PI, component gives rise to both sum and difference frequencies, the domi- 
nant component being the difference frequency at  approx. 0.6PII. For both character- 
istic lengths, the interaction may be written as cos [Zn(aP) t ]  cos [ZnPt], where afl is 
the low-frequency component. Written in this manner, it is clear that  the low- 
frequency component (either 0.5/3, or 0.4@,,) serves to amplitude-modulate the 
oscillation a t  the fundamental shear-layer-instability frequency. 

The fundamental frequency is generated by the shear-layer instability. The source 
of the low-frequency component is apparently the result of a self-selection process, 
whereby a cyclic displacement of the shear layer a t  impingement gives rise to  a low- 
frequency component whose overall phase difference is compatible with the cavity 
length. As will be shown in 8 7, the lowest-frequency snbharmonic component has a 
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wavelength that is equal to  the impingement length for both lengths examined here, 
and propagates a t  approximately the same phase speed as the fundamental component. 
This low-frequency component, as will be shown in § 5, may be interpreted as a low- 
frequency flapping of the shear layer spanning the cavity mouth. 

I n  addition, bicoherence analysis clearly indicates the coupling (phase coherence) 
nssociat,ed with production of higher harmonics, heretofore uncharacterized on 
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FIGURE 11.  Time-averaged ( a )  amplitude spectrum, (b)  perspective view of bicoherence spec- 
trum, and (c )  top (contour) view of bicoherence spectrum for ' conditionally sampled ' data, 
showing characteristic stage I1 oscillations with predominant modulation at approx. 0.4p. In  
(c), initial contour value is 0.20, with an increment of 0.15 between cont,ours; LIB, = 100, 
Roo = 190. 

a bispectral basis. This higher-harmonic production has been observed in earlier 
studies of externally excited, non-impinging shear layers in one-dimensional 
spectra. 

5. Source of dominant upstream influence : vortex-corner interactions 
In order for the oscillation a t  the fundamental and low frequencies to be self- 

sustaining, the unsteady flow-corner interaction, and its upstream influence, must 
be compatible with these observed frequencies. I n  examining the nature of these 
corner interactions, extensive flow visualization was employed. 

I n  this investigation, the existence of large vortical structures in the cavity shear 
layer was demonstrated using the hydrogen-bubble technique with various time- 
line markers; however, the electrical field required for the hydrogen-bubble electrolysis 
precluded use of hot-film anemometry, necessitating dye visualization. The preliminary 
hydrogen-bubble experiments, in conjunction with the discussion of Michalke (1965)) 
justified the interpretation of dye-streakline roll-up as an agglomeration of vorticity. 
To relate the observed flow structures to pressure and velocity traces, dye visualization 
was combined with simultaneous anemometry and pressure measurements; this time- 
dependent information was recorded using the high-speed video system, discu ssed 
previously, having a framing rate of 120 framesls. The velocity and impingement 
lengths were the same as thoseemployed in the foregoing study of nonlinear interaction. 
The shorter length (LIB, = 80) is representative of stage I oscillations with modulation 
at 0.5p,. The longer length (L/B, = 100) corresponds to stage I1 oscillations with 
modulation a t  approx. 0.4/3,,. 

The mechanism for generating the 0.5/3, component is set forth in the photographs 
in figure 12. Starting a t  the top left, working down, then up to the top right, the 
progress of succcessive vortices is detailed a t  sequential instants in time. The traces 
shown in figure 12 are the fluctuating pressure trace (taken a t  x = L, y = - 0.24 cm) 
and the fluctuating hot-film (located a t  x = 0 and y = 0.13 cm, where u / U  = 0.61) 
trace corresponding to three cycles before and after the durat)ion of the photographic 
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FIGURE 12. Visualization of generating mechanism at impingement for 0.5p 
low-frequency modulation; L fe, = 80, Roo = 190. 

sequence. The letters on the traces indicate the instantaneous output from the trans- 
ducers corresponding to each of the photographs. In  figure 12 (a) ,  the sharp negative- 
pressure spike is seen to occur when the vortex has impacted with the corner. The 
pressure rises to a positive maximum between successive vortices (figure 12c) and 
then drops again to an extreme negative value as the next vortex strikes (figure 1 2 d ) .  
However, this second negative spike has a larger absolute magnitude than the first. 
A careful study of the visualization photos reveals the second vortex to be located a t  
a lower vertical position on the edge than the first. That is, a larger fraction of the 
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distributed vorticity associated with the second vortex is severed by the edge. This 
more complete severing of the vortex results in a stronger pressure-perturbation field, 
which is communicated to the receptive region of the shear layer near separation, as 
evidenced by the hot-film trace showing the resultant velocity perturbation near 
separation. The third vortex in the series strikes the edge a t  a transverse (i.e. y) 
location very. similar to the first and results in a smaller negative-pressure peak and 
smaller-amplitude upstream modulation of the  shear layer. Thus it is the organized 
alternation in the vertical location of the vortices as they impinge on the edge that is 
primarily responsible for the 0.5/3, component observed in the spectra of stage I in 
figure 9 (a). Moreover, the strong upstream influence of the vortex-corner interaction 
is seen in the velocity signal taken near separation (see figure 12). 

This high-low pattern of vortex impingement was observed for as many as thirty 
consecutive vortices. However, this pattern was observed to alternate with a pattern 
involving relatively consistent impingement of vortices at  the same vertical location, 
thereby generating pressure and velocity signals of frequency PI with no noticeable 
low-frequency distortion. The relative duration of each of these two patterns was not 
constant. It is this intermittent alternation between patterns that makes cautious 
interpretation of time-averaged amplitudes essential. 

The generation of low-frequency components in stage I1 also involves single- 
vortex+dge interaction but, as deduced from extensive visualization, the generation 
of low-frequency components is not due simply to a repeating high-low impingement 
pattern of alternate vortices. Instead, it involves cycling between varying degrees of 
severing of the incident vortex (see the complete-clipping, partial-clipping, and 
complete-escape mechanisms shown in Rockwell & Knisely 1 9 7 9 4 .  A complication in 
attempting to define this mechanism is that the cores of vortices impinging upon the 
corner a t  this longer length have become somewhat less organized. Although the 
resultant pressure signal indicates a defined pattern of interaction, the pattern is 
most evident from examination of the velocity fluctuations measured using a hot 
film a t  the edge of the shear layer, a technique commonly used to determine large- 
scale coherence in free shear layers (Lau, Fisher & Fuchs 1972; Winant & Browand 
1974; Browand & Weidman 1976). 

The corresponding pattern of vortex-corner interaction involves ordered interaction 
of five successive vortices, corresponding to five cycles of the velocity (or pressure) 
signal a t  the fundamental frequency; this vortex pattern and consequently the form 
of the velocity trace tended to be repetitive. The pattern of vortex-corner interaction 
is given in figure 13, where the horizontal line in the upper-right-hand corner of each 
photograph designates the hot-film probe that gave the trace at the bottom of the 
figure. As in figure 12, starting a t  the top left, working down and then up to the top 
right, the photos are a sequence taken from a video recording. The letters on the trace 
indicate the instantaneous output of the hot-film probe corresponding to each photo. 
The diel,snce between the dyed region and the fixed hot-film probe indicates, in an 
approsiviiate sense, the transverse (i.e. y )  location of the impinging vortex. In  figure 
13(a), the boundary of the dyed region nearly touches the probe, and the hot-film 
trace shows a correspondingly large positive perturbation in velocity. In  figure 13 (c) 
there is a greater distance between the edge of the dyed region and the probe, corres- 
ponding to a relatively weak velocity fluctuation. At position ( e )  the trace again 
shows a large peak, and the dyed region in figure 13 ( e )  again nearly touches the probe. 
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FIGURE 13. Visualization of generating mechanism at impingement for 0.41, 
0.6/3 low-frequency modulation; L/O, = 100, Rg, = 190. 

In figures 13(y,h) there is more complete severing of the vortical structure, with 
greater distance between the probe and the dye. The corresponding velocity fluctua- 
tion is reduced. Finally, in figure 1 3  (j) the vortex strikes the edge in a manner very 
similar to that portrayed in figure 13 (a).  From the trace, it is seen that the cycle has 
begun again with the occurrence of the peak labelled j. 
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Several features of this pattern are noteworthy. First, the velocity trace in figure 
13 shows a great similarity to the traces presented in figure 10. The peaks c, e, g ,  h, j in 
figure 13 correspond to the pattern ba in figure 10. From the traces in figure 10, strong 
nonlinear coupling between 0.4,8,, and PII was deduced, indicating that the process 
involved is not a simple superposition of low-frequency shear-layer flapping and shear- 
layer instability. Instead the process involves the amplitude modulation of the shear- 
layer instability by the low-frequency flapping of the shear layer. 

I n  a simple model of this amplitude modulation, Knisely (1980) has shown that 
varying the relative phasing between frequency components results in five-cycle 
patterns with different forms. The variation of the form of the five-cycle patterns in 
figures 10 and 13 then suggests that the phasing between frequency components may 
vary significantly with time over very long records. A time-dependent phase relation 
is most likely associated with the observed intermittency of the stage I1 subharmonic 
self-modulation, as well as that already noted for stage I self-modulation. 

Furthermore, in a related numerical study, Conlisk & Rockwell (1982) have shown 
that by prescribing transversely staggered patterns of vortices similar to those of 
figure 13, time-averaged spectra having well-defined peaks a t  0.4p, 0.6p and /3 can be 
calculated. 

From the flow-visualization studies presented here, it is seen that the mechanism 
generating the low-frequency component is an ordered pattern of vortex-corner 
interactions, which may be interpreted as a low-frequency ‘flapping’ of the shear 
layer. To sustain the low-frequency modulation process, these disturbances are 
essentially transmitted instantaneously to the sensitive region of the shear layer a t  
the upstream separation edge; these perturbations, in turn, are amplified as they travel 
downstream. Section 6 will examine the growth of this downstream-travelling wave. 

6. Growth of downstream-travelling instability wave 
To characterize the influence of vortex-edge interactions at  impingement on the 

upstream flow dynamics near separation (i.e. small values of x in figure 2), it is neces- 
sary to determine the growth rates of the fundamental and low-frequency com- 
ponents for this region, and whether the low-frequency components grow a t  a rate 
corresponding to their own respective frequencies, or follow the growth rate of the 
fundamental. Growth rates of all components were determined by spectral analysis 
of velocity fluctuations. Each spectrum used for deducing the amplitudes of the 
oscillation components represented an ensemble-average of ten spectra, with each 
of these spectra, in turn, based on 25 cycles of oscillation. Two sets of data were taken: 
one with the probe positioned a t  the edge of the shear layer (u/ U = 0.95), the other 
with the probe a t  the transverse (y) location corresponding to the maximum velocity 
fluctuation amplitude in the shear layer. For each set, distributions of fluctuation 
amplitude [(u;)2]*/df as a function of streamwise co-ordinate x could be constructed. 
The same two impingement lengths previously used for visualization and nonlinear 
interaction studies (LIB, = 80 and loo), corresponding to well-defined oscillations with 
0*5p, and 0.4p11 modulation, respectively, were again employed for this test. 

For the case of modulation a t  0.5p, (L/8, = 80), the growth of the fundamental 
component, measured both a t  the edge of the shear layer (figure 14) and a t  the y- 
location of maximum fluctuation (figure 15) agrees well with the predicted growth 
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FIGURE 14. Growth rates of 0.6/?, and 111 components with increasing downstream distance; 
from spectral analysis of hot-film output with probe located at y-location corresponding to 
u /U = 0.95. Roo = 190, L/B, = 80. 0.5P-component: V ,  data; - -  --, theory. /?-component: 
0, data;  __ , theory. 

rate from Michalke’s (1 965) linear spatial-stability theory. (The reference momentum 
thickness used in the theoretical calculations was the value at x/O, = 10, near the 
centre of the linear-growth region and denoted by Om.) The initial growth rate of the 
component a t  0.5P1 is seen to follow closely that of the fundamental PI rather than 
the theoretical growth rate a t  frequency 0-5,8,. Moreover, the degree of half-harmonic 
modulation of the fundamental signal varies little in the linear region, as is reflected 
by the approximately parallel growthratesof PI and0-5/3, in figures 14and 15. Remark- 
able are the relatively large initial amplitudes of the fundamental (PI) and modulation 
(0.5P1) componentsvery near separation. At x = 0 + in figure 14, the respective values 
are 0-0028Um and 0.0006Um. The ‘feedback’ from the region of the impingement corner 
is indeed strong enough to  provide a substantial signal level in the ‘sensitive’ region 
of the shear layer. 

For the case of modulation of the fundamental PII by the 0.4P,, component (figures 
16, 17)) the linear-growth regions exhibit similar characteristics as for the modulation 
of PI by the 0.5P, component (figures 14, 15): the low-frequency components follow 
the growth rate of the fundamental. However, the amplitudes of all components a t  
x = O+ are considerably weaker for the longer-length cavity (compare figures 14, 15 
with 16, 17))  indicating a weaker upstream influence from the impingement edge. 
Most significant is that all components in figures 16 and 17 are of the same order of 
magnitude a t  x = 0+, with the 0-4,8,, and pII components being nearly equal. More- 
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FIGURE 15. Growth rates of 0.5/?, and /?, components with increasing downstream distance; 
from spectral analysis of hot-film output with probe a t  location of maximum fluctuating ampli- 
tude. Roo ,= 190, LIB,, = 80. 0~5/?-component: V ,  data; - - - -, theory. /3-component: 0, data; 
-, theory. 

over, in accordance with the measurements of Freymuth (1966), who showed that 
decreasing the amplitude of external excitation of a non-impinging jet increases the 
streamwise extent of the linear-growth region, the weaker value of fluctuation ampli- 
tude of the fundamental (PII) a t  x = O+ results in a longer linear region (figures 16, 1 7 )  
than that resulting from the initially stronger value of the fundamental (PI) component 
(figures 14, 15). 

To provide further insight into the self-sustaining amplitude-modulation process, 
streamwise variation of phase is required; for the nonlinear coupling criterion for 
wavenumbers to be satisfied, as was previously assumed, all components must have 
the same phase speed. In  9 7,  attention is given to the near-field phase distributions of 
each of the components of the self-modulated impinging flow, as well as the overall 
phase difference between separation and impingement. 

7. Overall phase conditions for fundamental and low-frequency 
components 

Cross-spectral analysis of the velocity signal from the hot-film probe located a t  the 
edge of the shear layer and the fixed pressure probe was carried out to evaluate the 
streamwise phase distributions a t  each of the discrete frequency components. The 
same two characteristic lengths, LIB, = 80 and 100, used in the previous experiments, 
were again employed. 
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FIGURE 16. Growth rates of 0.4p1,, 0.6/3,,, and PI, components with increasing downstream 
distance ; from spectral analysis of hot-film output with probe located a t  y-location corresponding 
to u l U  = 0.95. Reo = 190, L/O, = 100. 0.4,8-component: A, data; -- - , theory. O.6P- 
component : 0 ,  data ; - - - -, theory. P-component : , data ; -, theory. 
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FIGURE 18. Phase variation of 0.5/3, and /3, components with downstream distance; hot-film 
probe located at positions where u f U = 0.95. Roo = 190, LIB,  = 80. V ,O.5,!?-eomponent; 0, ,!?. 

I n  figures 18 and 19, the phase of the fundamental frequency component p is seen 
to  vary linearly with downstream distance for both stages of oscillation. Corresponding 
wavenumbers 2 ~ 0 m / h  calculated from these phase variations increase with increasing 
frequency, as predicted by Michalke (1965) (recall that  8, is a reference momentum 
thickness near the centre of the linear growth region where x/O0 = 10); they are 
approximately 10-15 % higher than the theoretical values. 

The curve through the data for the fundamental is a least-squares, straight-line fit 
to the experimental data in both figures 18 and 19. To examine the possibility that the 
low-frequency modulating components and the respective fundamental component 
travel a t  the same phase speeds, the required d+/dx to effect equal phase speeds was 
calculated. Knowing the subharmonic frequencies ( fj,), the local phase speeds are 
given by cji = 27rfj,(d$/dx)-l. The results of such calculations are lines passing 
through the subharmonic data. Throughout the shear layer, but especially in the 
linear region, where all frequency components grow a t  the rate of the fundamental 
(see figures 14, 16), the data are well-represented (within experimental accuracy) by 
the calculated lines. Thus it is concluded that the fundamental and subharmonic 
component(s) propagate with approximately the same phase speed, which is about 
0.48u. 

It is noted that all frequency components in figures 18 and 19 appear to  undergo a 
change in phase from separation to impingement (along the edge of the shear layer) 
that is approximately an integral multiple of 27r. That is, each low-frequency component 
independently satisjies the criterion that L = kh, where Ic is  an  integer. This contrasts 
with the investigation of Sarohia (1975) for a cavity-type flow; in his case, where 
measurements were taken within the shear layer, the relation L/h  N n -I- 4 was found 
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hot-film probe located at positions where u / U  = 0.95. Roo = 190, L/O0 = 100. a, 0.4p- 
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to be well-approximated along the mouth (y = 0) of the cavity. However, due to the 
severe phase distortions that Sarohia found to occur near y = 0, it seems that the 
most appropriate location for characterizing the overall phase difference is along the 
line u / U  = 0.95, i.e. along the edge of the shear layer. Indeed, if one examines Sarohia’s 
phase data along the line u / U  = 0.95, it  is seen that the relation L = kh is satisfied. 

For the two stages of oscillation examined here, it  appears that the number of 
possible subharmonics is governed by the streamwise phase criterion, 

A& = $iiL - $Go = Zkn, 

where daL is the phase at  impingement and $;, is the phase a t  separation (both 
measured at the edge of the shear layer). For stage I, the fundamental has a phase 
change of 4n from separation to impingement, permitting only one subharmonic 
with a phase change of 2n. For stage 11, the fundamental has a phase change of 6n, 
which allows for subharmonics with phase changes of 4n and 27r. I n  general, for the 
predominant and persistent oscillation components (p, 0.4p, 0.5p, O e S p ) ,  i f  the fundamen- 
tal (p) satisfies the phase criterion A$ = 2kn, it is expected that k - 1 subharmonics may 
be present with overall phase differences of 2(k  - 1) n, 2(k  - 2 )  n, . , . ,2n; the lowest 
a,dmissibEe subharmonic having an overall phase diference of 2n. 
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8. Conclusions 

This experimental investigation of low-frequency self-modulation of an impinging 
cavity shear layer indicates that the low-frequency components are associated with 
the interaction of successive shear-layer vortices with the downstream cavity corner. 
This cyclic transverse displacement of the shear layer a t  impingement is interpreted 
as a low-frequency flapping of the shear layer. Low-frequency components were found 
to persist over a twofold range of both mean velocity and impingement length. Two 
distinct stages of oscillation were observed, one with a single subharmonic (stage I)  
and one with dual subharmonics (stage 11). Detailed study of two representative 
lengths, one from each of these stages, indicated that the low-frequency flapping 
motion has a wavelength equal to the cavity length and interacts nonlinearly with the 
shear-layer instability. This interaction can be written in the form 

COS [2n(aP) t + A p I  cos Pnpt + 5491, 

indicating an amplitude-modulated process. A trigonometric identity allows this 
modulation to be written as sum, (1 + a) p, and difference, (1 - a) p, frequencies. The 
nonlinear generation of the difference frequency was found to be the stronger of the 
two, as we also found for dual-frequency external excitation of both a turbulent jet 
(Ronneberger & Ackermann 1979) and a non-impinging shear layer (Miksad 1973). 

The authors gratefully acknowledge the financial support of the National Science 
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